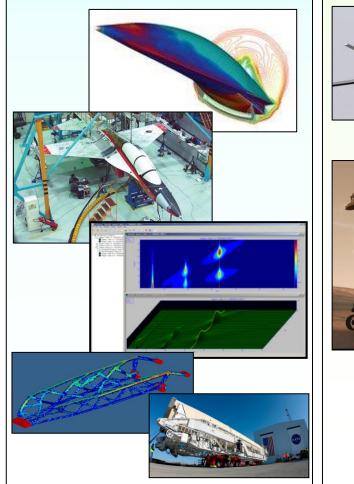
Best Practices and Usage Guidelines for NX Nastran Mesh Gluing

Jonathan Buck ATA Engineering

> Siemens PLM Connection 2014 Orlando, FL June16-19

www.plmworld.org

SIEMENS


Siemens PLM Connectio

Americas User Conference 2014

Orlando, FL – June 16-19

ATA Engineering, Inc. Innovative Solutions through Test and Analysis-Driven Design

ATA Engineering Offers Services for:

- Design
- Analysis
- Test
- Process Improvement

ATA is a value-added-reseller of Siemens PLM Software's CAD/CAE and PLM software packages. For more information, visit our website <u>http://www.ata-e.com</u>

Agenda

- Introductory Survey
- Motivation
- Types of glue connections
- Glue parameters/options
- Glue connection types in detail
- Four important model checks when using mesh gluing
- Observations and recommendations

Introductory Survey

- Have you ever struggled to create NX mesh mating conditions or match meshes between parts?
- Have you ever had to remesh a part to attain a conforming mesh with another part?
- Have you ever had two parts with incompatible meshes but couldn't remesh them because you didn't have the CAD?
- Have you ever wished that you could just mesh parts independently and still connect them?

Motivation

- Linear brick elements are often preferred for modeling adhesive, composite, brittle, or orthotropic materials where accurate stress predictions are critical
- Parabolic tetrahedral elements are often preferred for metallic fittings with complex geometry with fillets, holes, light-weighting features, etc., and are not suitable for anisotropic materials
- To accelerate analysis time, NX Nastran mesh gluing offers the promise of joining dissimilar meshes, allowing components to be meshed individually with their preferred approach
 - Note: NX Nastran mesh gluing is intended to create a stiff, elastic connection between parts, **not** to represent adhesive or actual glue

Types of Glue Connections in NX Nastran

Туре	Description
Edge-to-Edge	Glue between the edges of shell, axisymmetric, plane stress, and plane strain elements.
Edge-to-Surface	Glue between shell element edges and shell or solid element faces.
Surface-to-Surface	Glue between shell or solid element faces and shell or solid element faces.

NX Nastran Glue Control Parameters

Solution		ు	×			
olution		A	^			
lame	Edge to Surface Gluing with Co	onstrained Strain)			
Solver	NX NASTRAN	IX NASTRAN				
Analysis Type	Structural					
D Solid Option	None					
Solution Type	SOL 101 Linear Statics - Globa	I Constraints				
Automatically C	reate Step or Subcase					
OL 101 Linear S	tatics - Global Constraints		٨			
		Preview	1			
General File Ma	nagement Executive Control	Case Control Bulk Data Parameters				
	hagement Executive control	Duk Data Parameters	1			
Title			/			
Subtitle			/			
🞸 Bulk Data Ec	no Request	Bulk Data Echo Re 🔽 🌽 🚰 💌				
Rigid Body Check	s	None 🔽 🕅 🔽				
Rigid Element Me	hod	Linear Elimination				
🗸 Output Requ	ests	Structural Output 🔽 🔑 🚰 🔽				
Global Contact Pa	arameters	None R				
Global Glue Para	matara	None				
User Defined Tex	t	None 🔽 🖆 💌				

~ ~ ^

OK Apply Cancel

Global Glue Parameters

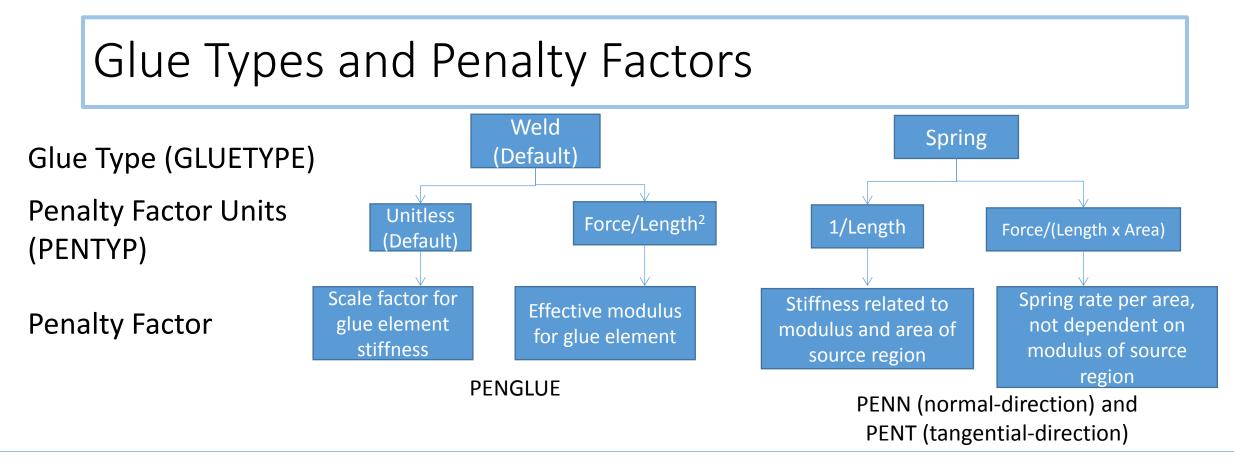
(default options shown)

Glue Parameters - Li	near Global1	<u>ວ x</u>
Modeling Object		^
Name	Glue Parameters - Linear Global1	
Label	0	
Properties		^
Description		
Card Name		BGPARM
Glue Formulation (GLUETY)	PE)	Weld Like Connection
Penalty Factor Units (PENT)	YP)	Unitless
Penalty Factor (PENGLUE)		1
Integration Order (INTORD)		Medium
Source Region Mesh (REFI	NE)	Use new algorithm 🔽
Export a Preview Bulk Data	File (PREVIEW)	No
Edge-to-Surface Glue Stiff	ness Distribution on Glued Surface (ESOPT)	Strains Are Not Const
	~ ~ ~	
		OK Cancel

Choose between weld-type and spring-type glue connections

Select units for the desired penalty factor

Enter penalty factor/stiffness for glue connection


Determine number of glue points per element on source face

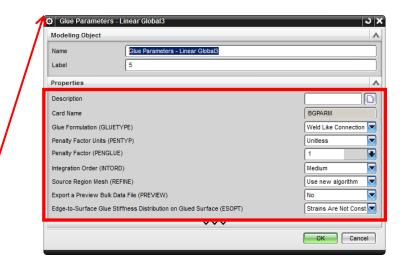
Refine source face mesh density to correspond to target face

New in NX9! Creates "dummy" elements to visualize the glue connection (Introduced in NX Nastran 8.5)

New in NX9! Prevents artificial constraint of strain in the plane of the glued surface

- Although the spring-type connection appears to offer the advantages of selectively tuning the normal and tangential stiffnesses, the weld-type connection is the preferred method because
 - Is generally more robust and user-friendly to implement
 - It transfers moments at the glued interface (the spring-type connection can introduce artificial rotational energy)

Some Glue Options Can Only Be Set at the Case Control Level


#PLMCONX

<u>Glue Parameters Available in Solution Case Control Options</u>

Solution				_	_	_		<u></u> ୦ ୪
Solution								~
Name	Edge to S	Surface Gluing with	Con	strained Str	ain			
Solver	NX NAST	RAN						
Analysis Type	Structura	al						
2D Solid Option	None							
Solution Type	SOL 101	Linear Statics - Glob	oal C	Constraints				
Automatically Cr	eate Step	or Subcase						
SOL 101 Linear St	atics - Glo	obal Constraints						^
							Pre	eview
General File Mar	agement	Executive Control	Ca	se Control	Bulk Data	Parame	ters	
Title								
Subtitle				<u> </u>				۳.
🗸 Bulk Data Ech	o Request			Bulk D	ata Echo R	-		T
Rigid Body Check	5			None				٦/
Rigid Element Meth				Linear Elim	ination			
V Output Reque				Struct	ural Output	-) 🖳	
Global Contact Pa				None				БI
Global Glue Paran				None				ΒI
				L				ΗI
User Defined Text				None		~	E	

~~~

OK Apply Cancel



Glue parameters are available within the \*.sim file and can be used for assembly FEMs

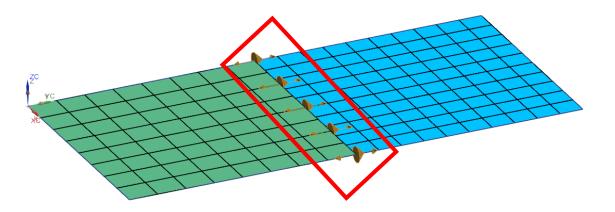
### **Override Global Glue Parameters**

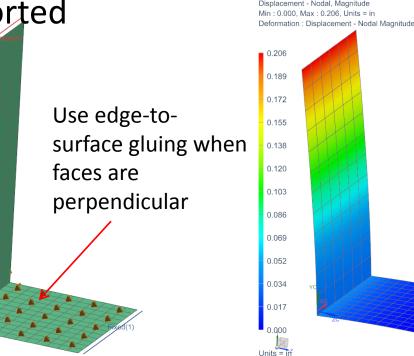
| B       Image: Simulation Objects         B       Image: Simulation Objects         C       Simulation Objects         C       Edge Gluing()         Image: Simulation Objects       Image: Simulation Objects         Image: Simulation Objects       Image: Simulation Simulation Simulation Simulation Simulation Simulation Simulation Simulation Simulation SimulationSimulationSimulation Simulation Simulation Simulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 🐠 edge_to_surface_demo_unconstrain_sim1   | Displayed & | 1   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------|-----|
| Groups       Groups         → DOFSets       OFSets         → Regions       -         • 1 - Surface Region       -         • 2 - Edge Region       -         • 1 Fild Fields       -         • ○ Edge Guing(1)       Inactive         • ○ • Edge Guing(1)       Inactive         • ○ • Edge Guing(1)       Active         • ○ • Edge Guing(1)       Active         • ○ • Edge Guing(1)       Active         • • • • Edge to Surface Gluing Demo       -         • • • • • Edge Guing(1)       • Active         • • • • • • Edge Gluing(1)       • Constraints         • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🗄 🗹 🞒 edge_to_surface_demo_fem1.fem       |             |     |
| → Regions         → Regions         → 1 - Surface Region         → 2 - Edge Region         → Win Fields         → ○ Edge Gbuing(1)         → → Edge Gbuing(1)         → → Edge to Surface Gluing Demo         → ⊕ Simulation Objects         → ⊕ Edge Gbuing(1)         ⊕ → ⊕ Edge to Surface Gluing Demo         ⊕ → ⊕ Edge to Surface Gluing Demo         ⊕ → ⊕ Edge to Surface Gluing Demo         ⊕ → ⊕ Edge to Surface Gluing 1         ⊕ → ⊕ Simulation Objects         ⊕ → ⊕ Subcase - Static Loads 1         ⊕ → ⊕ ± Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 🗹 🗁 CSYS                                  |             |     |
| Regions       1 - Surface Region         • 1 - Surface Region       2 - Edge Region         • 2 - Edge Region       •         • 1 - Surface Region       •         • • • • Fixed(1)       Nactive         • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 🗄 🦳 Groups                                |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DOFSets                                   |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 🖻 🦕 Regions                               |             |     |
| -::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ··· • 1 - Surface Region                  |             |     |
| □       Image: Simulation Object Container         □       □       Edge Gluing(1)         □       Image: Simulation Object Source         Image: Source Source       Image: Source Source         Image: Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
| □     □     Edge Gluing(1)     Inactive       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □       □     □     □     □ <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |             |     |
| ⊕ - □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |             |     |
| □       1/2       Constraint Container         □       ■       Fixed(1)       Active         □       ■       Edge to Surface Gluing Demo          □       ■       Edge to Surface Gluing Demo          □       ●       Edge to Surface Gluing (1)          □       ●       Edge Gluing(1)          □       ●       2       Constraints         □       ⊕       1/2       Constraints         □       ⊕       1/2       Constraints         □       ⊕       1/2       Constraints         □       ⊕       1/3       Simulation Objects         □       ■       Edge to Surface Gluing with Constrain       Active         □       ●       1/3       Constraints          □       ●       1/3       Constraints          ●       1/3       Constraints           ●       1/3       Constraints           ●       1/3       Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | Inactive    |     |
| Image: Second Secon             |                                           |             |     |
| □       ■       Edge to Surface Gluing Demo         □       ■       Simulation Objects         □       ●       ■       Simulation Objects         □       ●       ⊕       Subcase - Static Loads 1         □       ⊕       ⊕       Subcase - Static Loads 1         □       ⊕       ⊕       Simulation Objects         □       ⊕       Simulation Objects         ⊕       ⊕       ⊕       ⊕         ⊕       ⊕       ⊕       ⊕         ⊕       ⊕       ⊕       W         ⊕       ⊕       W       Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | Active      |     |
| C Edge Gluing(1)      C Edge Gluing(1)      P      Constraints      P      Gubcase - Static Loads 1      O - + Loads      Gesuits      Gesuits |                                           |             | /   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
| d <sup>P</sup> Subcase - Static Loads 1     d <sup>P</sup> + Loads     d <sup>P</sup> + Loads     d <sup>P</sup> + Loads     d <sup>P</sup> + Loads     d <sup>P</sup> + Constraint Active     d <sup>P</sup> + Simulation Objects     d <sup>P</sup> + Subcase - Static Loads 1     d <sup>P</sup> + Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |             | r 1 |
| ⊕-‡t. Loads       Sesuits       ⊡-∰ Edge to Surface Suing with Constrain       Active       ⊡ ∰ Simulation Objects       ⊕ ∰ Subcase - Static Loads 1       Active       ⊕- ∰ ‡t Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |             |     |
| ⊕. ♥ Results       ⊕. ♥ Edge to Surface Gluing with Constrain       Active       ⊕. ♥ Active       ⊕. ♥ ★ Subcase - Static Loads 1       ⊕. ♥ ↓ ± Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |             |     |
| □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 🗄 🖃 Loads                                 |             |     |
| Image: Simulation Objects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                         |             |     |
| ⊕                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 🖻 📲 Edge to Surface Gluing with Constrain | Active      |     |
| E Subcase - Static Loads 1 Active<br>⊕ ♥ . ↓ Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |             |     |
| 🗄 🗹 🕂 Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | Active      |     |
| Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Results                                   |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | Þ           |     |

| Source Region                                                                                                                |                  |                               |               |         |
|------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|---------------|---------|
|                                                                                                                              |                  |                               |               |         |
| * Edge Region                                                                                                                |                  | None                          |               | æ       |
| Target Region                                                                                                                |                  |                               |               |         |
| * Surface Region                                                                                                             |                  | None                          | -             | ø       |
| Linear Settings                                                                                                              |                  |                               |               |         |
| Search Distance (BGSET)                                                                                                      | )                | 0.03937007                    | 37401575 in   |         |
| Override Parameters (BGP                                                                                                     | ARM)             | None                          |               | 4       |
| Card Name BGSET                                                                                                              |                  |                               |               | Т       |
|                                                                                                                              | ~                | ~ ~ ~                         |               | _       |
|                                                                                                                              |                  |                               | ОК            | ) 🗌 🕻 a |
|                                                                                                                              |                  |                               |               |         |
|                                                                                                                              |                  |                               |               | Ţ       |
| 1                                                                                                                            | near Pair O      | verrides1                     | <b></b>       | ×       |
| Glue Parameters - Lit<br>Modeling Object<br>Name                                                                             |                  | verrides1<br>Hers - Linear Pa |               |         |
| Nodeling Object                                                                                                              |                  |                               |               | ×       |
| Nodeling Object                                                                                                              | Glue Parame      |                               |               |         |
| Modeling Object Name Label Cooperation                                                                                       | Glue Parame      |                               |               |         |
| Modeling Object Name Label Composition Description                                                                           | Glue Parame      |                               | ir Overrides1 |         |
| Modeling Object                                                                                                              | Glue Parame      | ters - Linear Pa              | ir Overrides1 |         |
| Modeling Object<br>Name (<br>Label (<br>Description<br>Card Name<br>Glue Formulation (GLUETYF                                | Glue Parame<br>5 | ters - Linear Pa              | ir Overrides1 |         |
| Modeling Object<br>Name (<br>Label (<br>Description<br>Card Name                                                             | Glue Parame<br>5 | tters - Linear Pa             | ir Overrides1 |         |
| Modeling Object<br>Name (<br>Label (<br>Description<br>Card Name<br>Glue Formulation (GLUETYF<br>Penalty Factor Units (PENTy | Glue Parame<br>5 | eters - Linear Pa             | ir Overrides1 |         |

## Combine Multiple Glue Connections with BGADD

- Local glue connections can be defined with unique parameters
- Can then be combined into a single set with BGADD card
  - Local parameter definitions override global parameter definitions





## Edge-to-Edge Gluing Guidelines

 Edge-to-edge gluing connects shell edges having faces with any alignment other than perpendicular

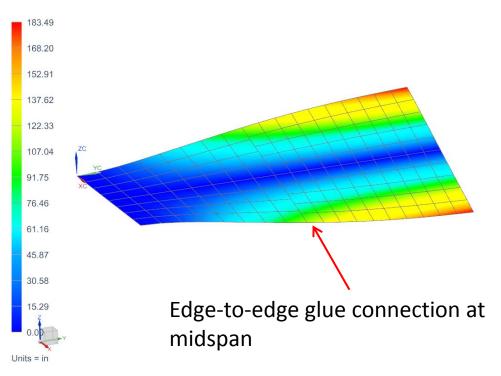
**#PLMCONX** 

- Consider edge-to-surface gluing instead
- Only the weld-type glue connection is supported





im1 : Edge to Surface Glue Connection Result


Subcase - Static Loads 1 Static Step 1

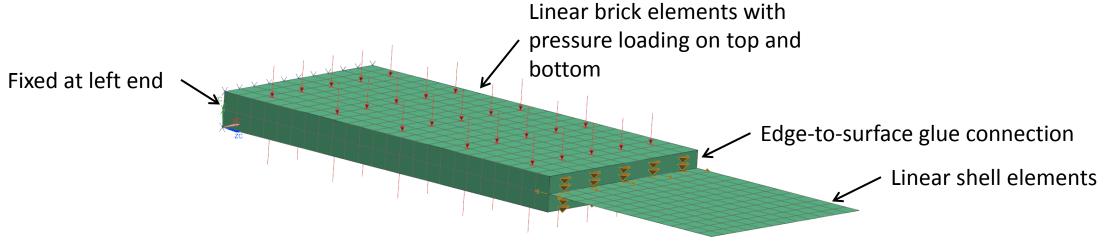
### Comparison of Weld-Type Glue Parameters for Edge-to-Edge Gluing

**#PLMCONX** 

### **Normal Modes for a Cantilever Plate**

edge\_to\_edge\_glue\_sim1 : Default Weld Unitless Parameters Result Subcase - Eigenvalue Method 1, Mode 2, 861.947 Hz Displacement - Nodal, Magnitude Min : 0.00, Max : 183.49, Units = in Deformation : Displacement - Nodal Magnitude



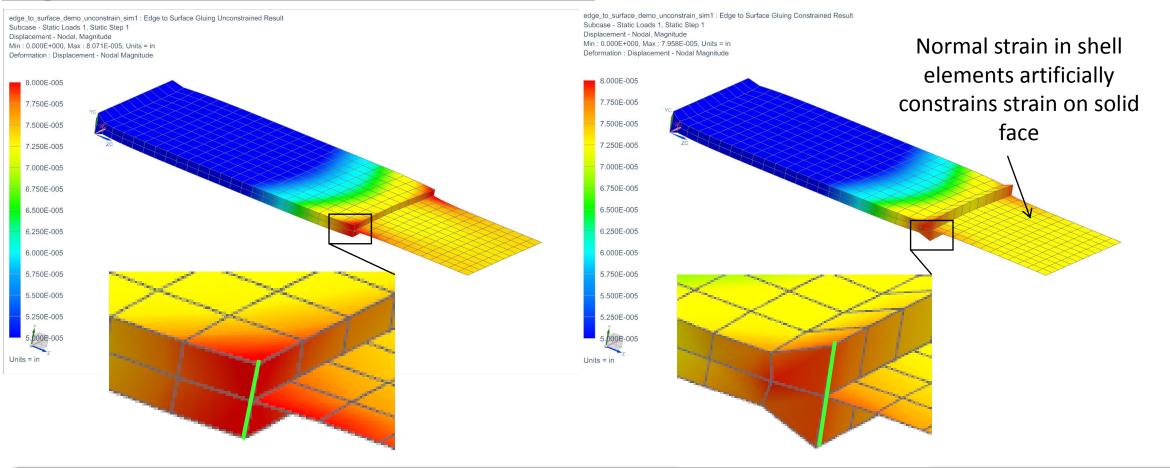

|               |            |       | Weld-Type                    | Glue  | Connecti | on               |                                 |
|---------------|------------|-------|------------------------------|-------|----------|------------------|---------------------------------|
|               | Conforming |       | Unitless                     |       |          | F/L <sup>2</sup> |                                 |
| Frequency     | Mesh       | 0.1x  | Default (1.0)                | 10x   | 1.0      | 1.05E+07         |                                 |
| 1st Mode (Hz) | 207.9      | 208.8 | 209.1                        | 209.3 | 13.62    | 209.1            |                                 |
| 2nd Mode (Hz) | 857.9      | 861.7 | 861.9                        | 862.0 | 194.2    | 861.9            |                                 |
| 3rd Mode (Hz) | 1286       | 1301  | 1306                         | 1307  | 321.9    | 1306             |                                 |
| 4th Mode (Hz) | 2781       | 2794  | 2794                         | 2795  | 481.1    | 2794             |                                 |
| 5th Mode (Hz) | 3462       | 3464  | 3468                         | 3470  | 491.7    | 3468             | Al 2024-T3                      |
|               |            |       | Weld-Type                    | Glue  | Connect  | ion              | modulus                         |
|               | Conforming | Uı    | nitless (Defaul              | t)    |          | F/L <sup>2</sup> | (ksi)                           |
| Percent Error | Mesh       | 0.1x  | Default (1.0)                | 10x   | 1.0      | 1.05E+07         | K                               |
| 1st Mode (%)  | -          | 0.4%  | 0.6%                         | 0.7%  | -93.4%   | 0.6%             |                                 |
| 2nd Mode (%)  | -          | 0.4%  | 0.5%                         | 0.5%  | -77.4%   | 0.5%             |                                 |
| 3rd Mode (%)  | -          | 1.2%  | 1.6%                         | 1.6%  | -75.0%   | 1.6%             |                                 |
| 4th Mode (%)  | -          | 0.5%  | 0.5%                         | 0.5%  | -82.7%   | 0.5%             |                                 |
| 5th Mode (%)  | -          | 0.1%  | 0.2%                         | 0.2%  | -85.8%   | 0.2%             |                                 |
|               |            |       |                              |       |          |                  |                                 |
|               |            |       | ld-type conr<br>penalty fact |       |          |                  | penalty factor<br>d to material |

satisfactory solutions

stiffness

## Edge-to-Surface Gluing Guidelines

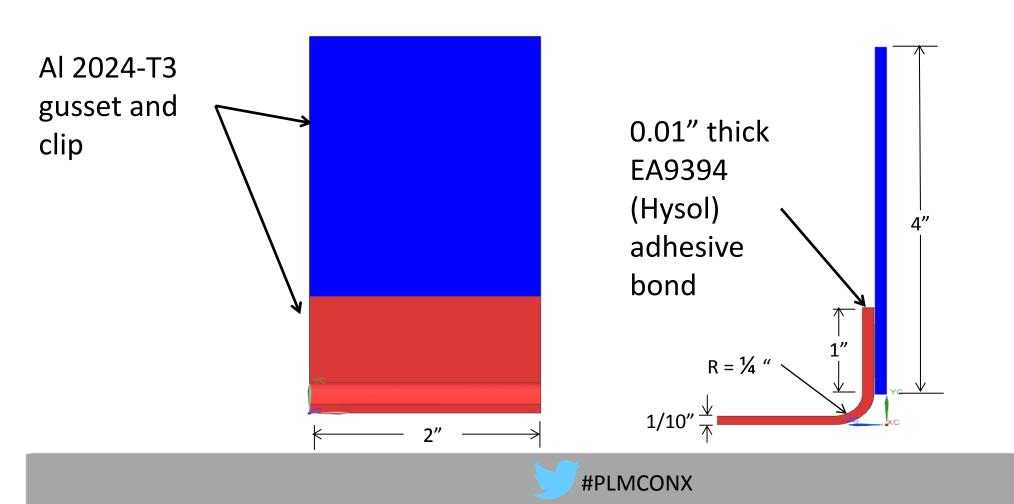
- Used to connect edges of shell elements to faces of solid elements
- The default option for the edge-to-surface glue stiffness distribution (ESOPT), which does not constrain strains of the solid element faces



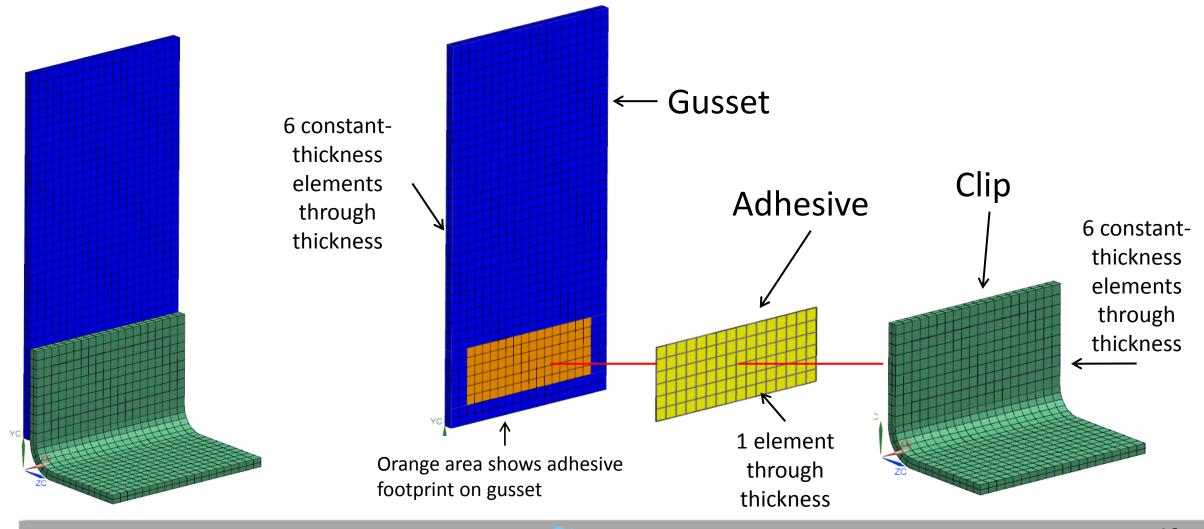



## Default Edge-to-Surface Parameter Prevents Artificial Stiffening

### **Edge-to-Surface Strains Unconstrained**


### **Edge-to-Surface Strains Constrained**



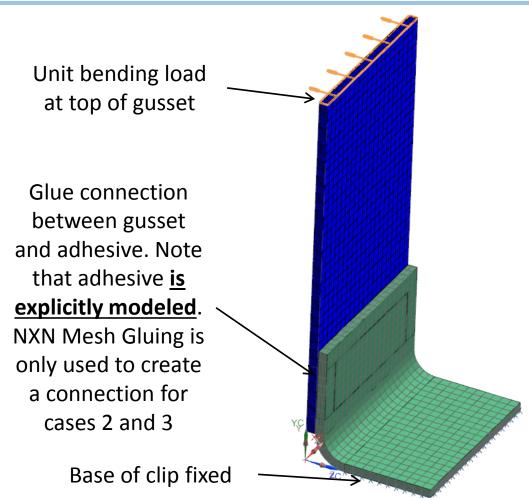



## Surface-to-Surface Gluing Example

### **Generic Bonded Clip and Gusset**



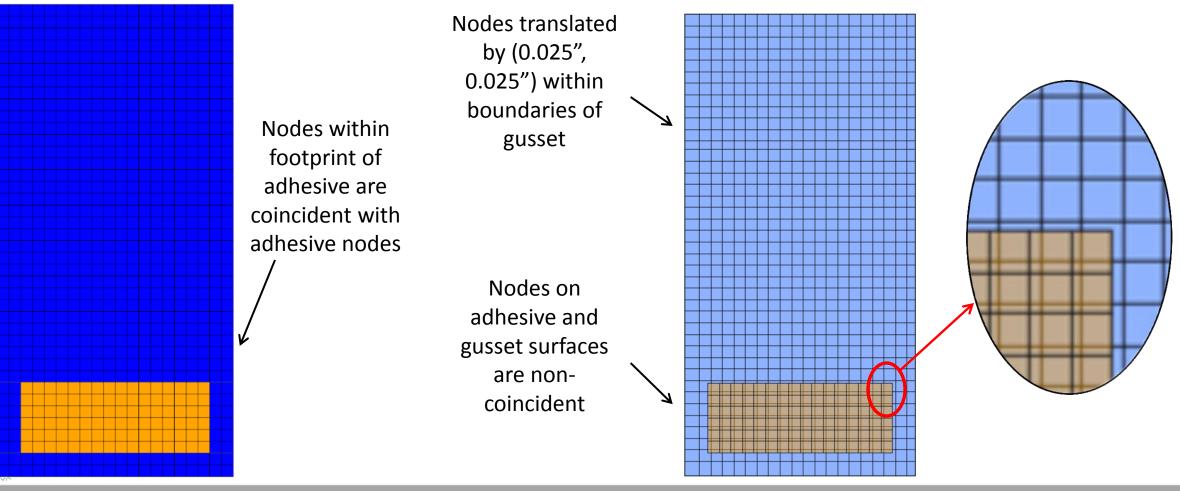
## Finite Element Model Description




**#PLMCONX** 

## Three Configurations Considered for Bonded Clip Example

**#PLMCONX** 


- 1. Adhesive meshed consistently with gusset (shared nodes between elements, no NXN glue)
- 2. Adhesive connected to gusset with NXN glue (meshes discontinuous but with coincident nodes)
- 3. Adhesive connected to gusset with NXN glue, nodes on gusset misaligned
- Linear and parabolic brick elements considered



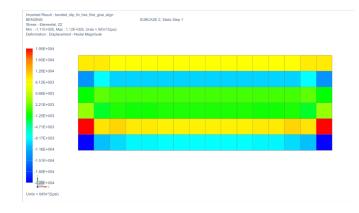
17

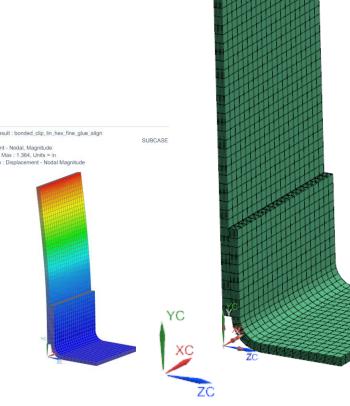
## Glued Meshes Have Nodes Aligned and Misaligned

### **Aligned Mesh**



**#PLMCONX** 


**Misaligned Mesh** 




# Parabolic Bricks Reduce Error In Displacement and Adhesive Peel Stress

| Model             | Element     |           | Mesh       | Normalized Tip | Normalized Peak |
|-------------------|-------------|-----------|------------|----------------|-----------------|
| Configuration No. | Formulation | Glue Type | Alignment  | Displacement   | σzz (Peel)      |
| 1                 | Linear Hex  | -         | -          | 1.0            | 1.0             |
| 2                 | Linear Hex  | Weld      | Aligned    | 1.0            | 1.0             |
| 3                 | Linear Hex  | Weld      | Misaligned | 0.98           | 1.22            |

| Model<br>Configuration No. | Element<br>Formulation | Glue Type | Mesh<br>Alignment | Normalized Tip<br>Displacement | Normalized Peak<br>σzz (Peel) |                                           |
|----------------------------|------------------------|-----------|-------------------|--------------------------------|-------------------------------|-------------------------------------------|
| 1                          | Parabolic Hex          | -         | -                 | 1.0                            | 1.0                           | BENDING<br>Displacement<br>Min : 0.000, M |
| 2                          | Parabolic Hex          | Weld      | Aligned           | 1.0                            | 1.0                           | Deformation :                             |
| 3                          | Parabolic Hex          | Weld      | Misaligned        | 1.0                            | 0.95                          | 1.364                                     |





1.137

1.023 0.909

0.796

0.682

0.568

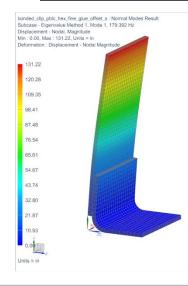
0.455

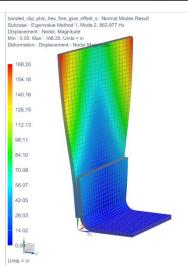
0.341

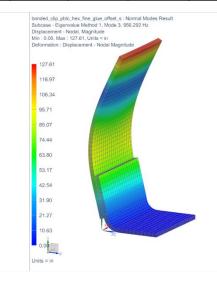
0.227

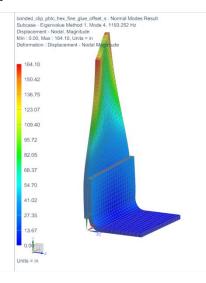
0.114

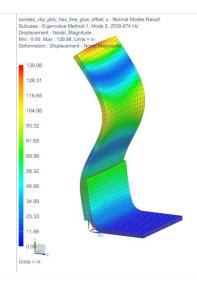
0.000


Units = in





### Glue Connection Provides Satisfactory Stiffness to Within 1%


|                            |                   | Normalized Natural Frequency |      |      |      |      |   |
|----------------------------|-------------------|------------------------------|------|------|------|------|---|
|                            |                   | 1st                          | 2nd  | 3rd  | 4th  | 5th  |   |
| <b>Element Formulation</b> | Connection        | Mode                         | Mode | Mode | Mode | Mode |   |
|                            | Conforming Mesh   | 1.00                         | 1.00 | 1.00 | 1.00 | 1.00 | R |
| Linear Hex                 | Glued, Aligned    | 1.00                         | 1.00 | 1.00 | 1.00 | 1.00 |   |
|                            | Glued, Misaligned | 1.01                         | 1.00 | 1.00 | 1.00 | 1.01 |   |
|                            | Conforming Mesh   | 1.00                         | 1.00 | 1.00 | 1.00 | 1.00 | K |
| Parabolic Hex              | Glued, Aligned    | 1.00                         | 1.00 | 1.00 | 1.00 | 1.00 |   |
|                            | Glued, Misaligned | 1.00                         | 1.00 | 1.00 | 1.00 | 1.00 |   |

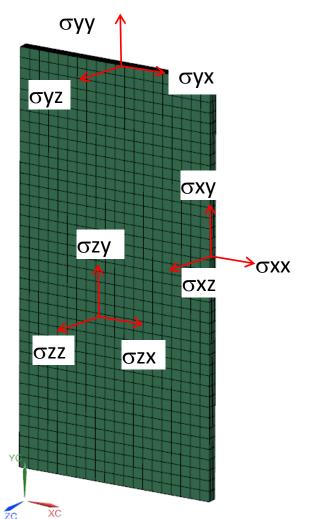

Frequencies for linear/parabolic hex models normalized to the
corresponding conforming mesh model for each mode to show relative error to "true" solution





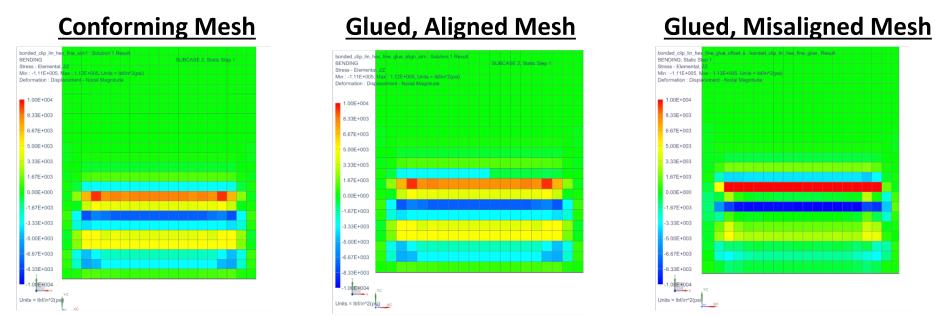









## Misaligned Glue Connection Introduces 50%+ Error in Stresses for with Linear Bricks


### **Stress Components in Gusset**

| Element<br>Formulation | Connection     | Stress<br>Condition | Stress Component | Normalized<br>Stress | Element<br>Formulation | Normalized<br>Stress |               |      |
|------------------------|----------------|---------------------|------------------|----------------------|------------------------|----------------------|---------------|------|
|                        |                |                     | YY Tension       | 1.00                 |                        | 1.00                 |               |      |
|                        |                |                     | XX Tension       | 1.00                 |                        | 1.00                 |               |      |
|                        |                | In-plane            | YY Compression   | 1.00                 |                        | 1.00                 |               |      |
| Linear Hex             | Conforming     |                     | XX Compression   | 1.00                 | Parabolic Hex          | 1.00                 |               |      |
| Linear nex             | Mesh           |                     | In-Plane Shear   | 1.00                 | Falabolic Hex          | 1.00                 |               |      |
|                        |                |                     | ZZ Tension       | 1.00                 |                        | 1.00                 |               |      |
|                        |                | Interlaminar        | YZ Shear         | 1.00                 |                        | 1.00                 |               |      |
|                        |                |                     | ZX Shear         | 1.00                 |                        | 1.00                 |               |      |
|                        |                |                     | YY Tension       | 1.00                 |                        | 1.00                 |               |      |
|                        |                |                     | XX Tension       | 1.00                 |                        | 1.00                 |               |      |
|                        |                | In-plane            | YY Compression   | 1.00                 |                        | 1.00                 |               |      |
| Linear Hex             |                |                     |                  | Alianod              | XX Compression         | 1.00                 | Parabolic Hex | 0.98 |
| Linear nex             | Gluea, Alighea | Blued, Aligned      | In-Plane Shear   | 1.00                 | Falabolic nex          | 1.00                 |               |      |
|                        |                |                     | ZZ Tension       | 1.00                 |                        | 1.00                 |               |      |
|                        |                | Interlaminar        | YZ Shear         | 1.00                 |                        | 1.00                 |               |      |
|                        |                |                     | ZX Shear         | 1.00                 |                        | 1.00                 |               |      |
|                        |                |                     | YY Tension       | 1.05                 |                        | 0.93                 |               |      |
|                        |                |                     | XX Tension       | 1.13                 |                        | 0.83                 |               |      |
|                        |                | In-plane            | YY Compression   | 1.00                 |                        | 1.04                 |               |      |
| Linearliev             | Glued,         |                     | XX Compression   | 1.08                 | Parabolic Hex          | 0.87                 |               |      |
| Linear Hex             | Misaligned     |                     | In-Plane Shear   | 1.12                 |                        | 1.17                 |               |      |
|                        |                |                     | ZZ Tension       | 1.57                 |                        | 1.18                 |               |      |
|                        |                | Interlaminar        | YZ Shear         | 1.17                 |                        | 0.88                 |               |      |
|                        |                |                     | ZX Shear         | 1.45                 |                        | 1.00                 |               |      |





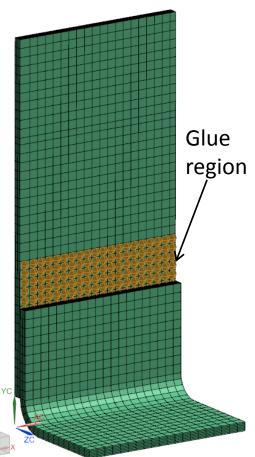
## Comparison of Gusset Normal Stresses with Glue Connection for Linear Brick Elements



Element centroidal stress contours for normal (through-thickness) stress



## Four Important Checks for Glue Connections


- Graphical methods
  - 1. View glue element preview
  - 2. Visualize glue results (force, pressure, traction)
- Non-graphical methods
  - 3. Check \*.f06 file for glue diagnostics
  - 4. Check for grounding that may have been introduced by glue connection



## Verifying Glue Connections with Preview

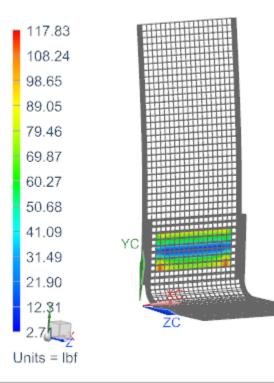
| Modeling Object           | (                                            | ^                      |
|---------------------------|----------------------------------------------|------------------------|
| Name                      | Glue Parameters - Linear Global1             |                        |
| Label                     | 9                                            | )                      |
| Properties                |                                              | ^                      |
| Description               |                                              |                        |
| Card Name                 |                                              | BGPARM                 |
| Glue Formulation (GLUET   | YPE)                                         | Weld Like Connection 🔽 |
| Penalty Factor Units (PEN | TYP)                                         | Unitless               |
| Penalty Factor (PENGLUE   | )                                            | 1                      |
| Integration Order (INTOR  | ))                                           | Medium 🔽               |
| Source Region Mesh (REI   | FINE)                                        | Use new algorithm 🔽    |
| Export a Preview Bulk Da  | ta File (PREVIEW)                            | Yes 🔽                  |
| Edge-to-Surface Glue Sti  | ffness Distribution on Glued Surface (ESOPT) | Strains Are Not Const  |
|                           | ~~~                                          |                        |

The preview elements are generated in a new bulk data file from the initial model with the following syntax <input\_file\_name>\_glue\_preview<subcaseid>\_<gluesetid>.dat



**#PLMCONX** 

Shell elements (blue) representing active element faces on source region


Shell elements (pink) representing active element faces on target region



## Verifying Glue Connections with Glue Results Output

### **Glue Force**

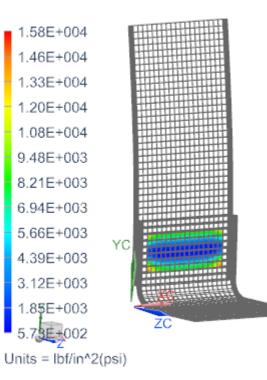
Imported Result : bonded\_clip\_lin\_hex\_fine\_glue\_align2 BENDING Glue Force - Nodal, Magnitude Min : 2.71, Max : 117.83, Units = lbf Deformation : Displacement - Nodal Magnitude



#### **Glue Pressure**

Imported Result : bonded\_clip\_lin\_hex\_fine\_glue\_align2 BENDING

Glue Pressure - Nodal, Scalar


Min : -1.56E+004, Max : 9.08E+003, Units = Ibf/in^2(psi) Deformation : Displacement - Nodal Magnitude

9.08E+003 7.02E+003 4.96E+003 2.90E+003 8.46E+002 -1.21E+003 -3.27E+003 -5.33E+003 -7.39E+003 -7.39E+003 -1.15E+004 -1.36E+004 -1.56E+004 Units = lbf/in^2(psi)

**#PLMCONX** 

### **Glue Traction**

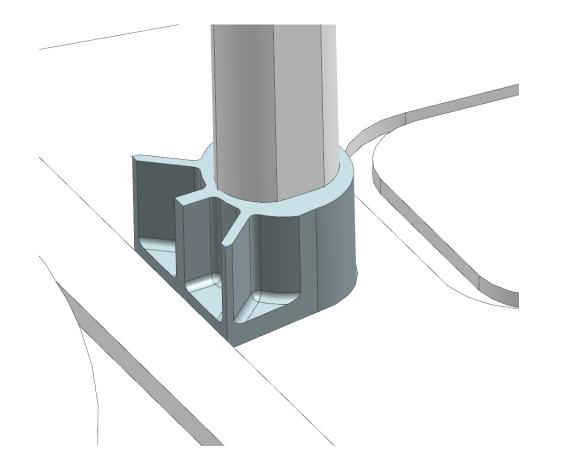
Imported Result : bonded\_clip\_lin\_hex\_fine\_glue\_align2 BENDING Glue Traction - Nodal, Magnitude Min : 5.73E+002, Max : 1.58E+004, Units = lbf/in^2(psi) Deformation : Displacement - Nodal Magnitude

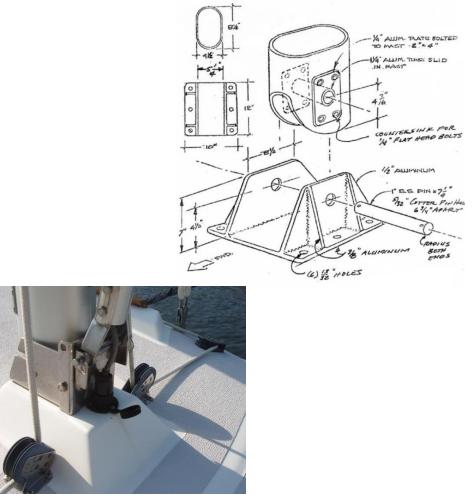


## Verifying Glue Connections with Glue Diagnostics

| Nastran issues a<br>warning if glue pairs<br>are separated by an<br>overly large<br>distance                                               | <pre>************************************</pre>                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Double check that<br><b>number of glue</b><br><b>pairs</b> is as expected<br>and that Nastran<br><b>creates glue</b><br><b>connections</b> | *** USER INFORMATION MESSAGE 4690 (FOCOEL)<br>CONNECTION STATISTICS<br>GLUE SUBCASE ID: 1<br>CLUE SET ID: 180<br>HUMBER OF GLUE PAIRS: 2<br>NUMBER OF GLUE ELEMENTS CREATED: 31788<br>NUMBER OF GLUE FACES: 8250<br>NUMBER OF EFFECTIVE GLUE FACES: 1456<br>*** GLUE STIFFNESS ADDED USING GLUE SET 100 WITH 31788 GLUE POINTS |




## Check for Grounding Effects in Glue Solutions


• Look for a PASS in all six degrees of freedom

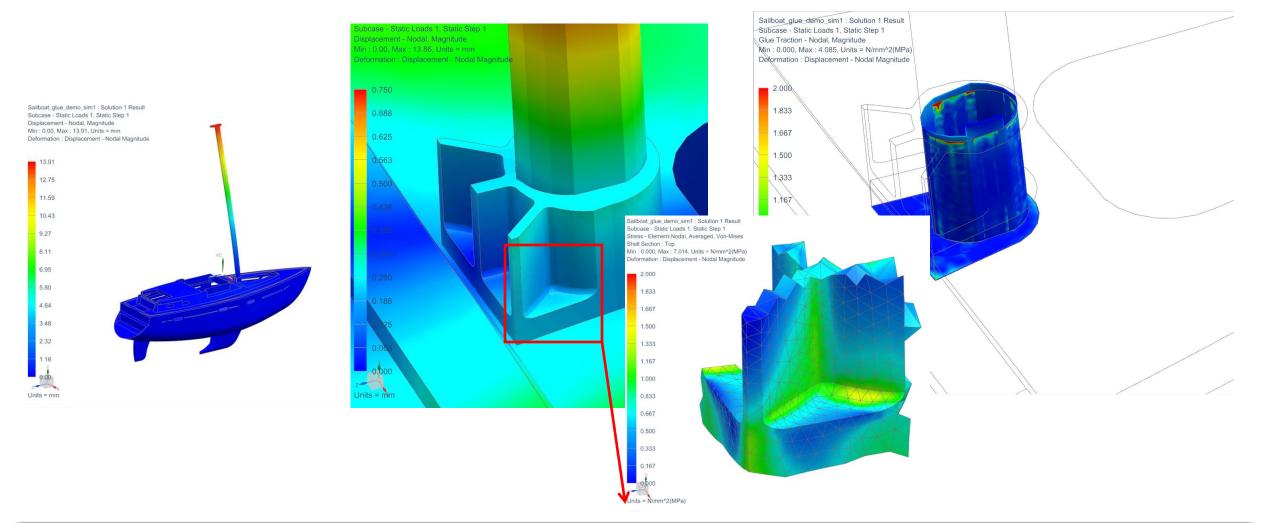
| ** | USER INFORMATION | MESSAGE 7570 (GPWG1D)      |              | ▲            |
|----|------------------|----------------------------|--------------|--------------|
|    | RESULTS OF RIGID | BODY CHECKS OF MATRIX KGG  | (G-SET)      | FOLLOW:      |
|    | PRINT RESULTS IN | ALL SIX DIRECTIONS AGAINST | THE LIMIT OF | 1.649811E-01 |
|    | DIRECTION        | STRAIN ENERGY              | PASS/FAIL    |              |
|    |                  |                            |              |              |
|    | 1                | 8.206116E-07               | PASS         |              |
|    | 2                | 8.429866E-06               | PASS         |              |
|    | 3                | 2.717180E-05               | PASS         |              |
|    | 4                | 2.335986E-08               | PASS         |              |
|    | 5                | 1.863032E-08               | PASS         |              |
|    | 6                | 3.186921E-08               | PASS         |              |



## NX Nastran Mesh Gluing Example – Sailboat Mast Plate Adapter Fitting








## NX Nastran Mesh Gluing Sailboat Demonstration

| Sensitation Recignitor                  |                 |                          |                       |   |
|-----------------------------------------|-----------------|--------------------------|-----------------------|---|
| Comment and a second second             | Statute         | 1be                      | Investment            | 1 |
| aboat_plus_benu_sinf am                 | Deployed & Work |                          | Detault INCOMETING    |   |
| Of Sollow, play dering Next New.        |                 |                          | Default ACTIVATIONS - |   |
| Proj. (met., pres., here., hereit., pre |                 |                          |                       |   |
| 2 State Lantes                          |                 |                          |                       |   |
| Palygan Geometry                        |                 | Per Olider off           |                       |   |
| Dig Polyan Budy (1)                     |                 |                          |                       |   |
| Ba Payan Bely (2)                       |                 |                          |                       |   |
| Polygen Body (8)                        |                 |                          |                       |   |
| 20 Collectors                           |                 |                          |                       |   |
| 2 A 30 Collectors                       |                 |                          |                       |   |
| TH firm                                 |                 |                          |                       |   |
| CIVS                                    |                 | Filter OfficSert Offi    |                       |   |
|                                         |                 |                          |                       |   |
| D0/Sets                                 |                 | (Film: Ort)(Set. Off)    |                       |   |
|                                         |                 | (Filler: DIT)(Surt: CIT) |                       |   |
| aguna                                   |                 | File Orbitist Offi       |                       |   |
| Krein                                   |                 |                          |                       |   |
| Simulation Dispect Company              |                 | Plan OTSSet OT           |                       |   |
| 7. Louis Centamer                       |                 | (Filer: 0/5/Set: 0/5     |                       |   |
| g Constraint Container                  |                 | (Film: Off)(Self. Off)   |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       | 4 |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       | - |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |
|                                         |                 |                          |                       |   |



## Sailboat Demonstration Sample Results

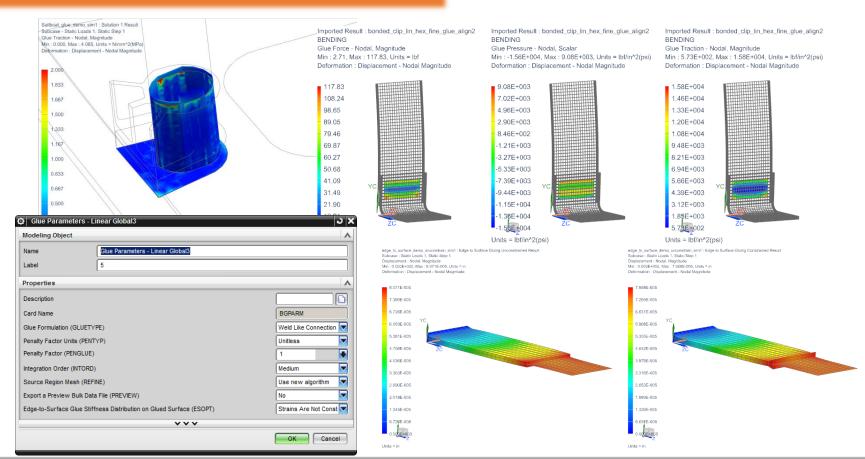




## Guidelines and Best Practices for NX Nastran Mesh Gluing

- NX Nastran mesh gluing provides a simple, straightforward way of attaching dissimilar meshes
- The default glue options (weld, unitless penalty factor) provide the best starting point
- When joining perpendicular shell faces, use edge-to-surface gluing, not edge-to-edge gluing
- Glued meshes provide satisfactory stiffness predictions
- Avoid using gluing near peak stress areas where accurate stress recovery is critical
- Use parabolic elements when using surface-to-surface gluing with solid elements for better stiffness and stress predictions
  - Unless the problem necessitates linear elements, then consider gluing far from the high-stress areas
- Important checks for solutions with glued connections
  - 1. Inspect glue element preview
  - 2. Visualize glue connection output (force, pressure, traction)
  - 3. Check \*.f06 file for glue diagnostics
  - 4. Verify that grounding strain energies are reasonable

## **Questions?**




### Tuesday, June 17<sup>th</sup>, 3:45pm – 4:45pm Celebration 9

**#PLMCONX** 

 Accelerate analysis time by joining dissimilar meshes with NX Nastran mesh gluing

Presenter: Jonathan Buck, ATA Engineering





# Thank you

## Siemens PLM Connection 2014 Orlando, FL June 16-19, 2014

SIEMENS Siemens **PLM Connection** Americas **User Conference** 2014 Orlando, FL – June 16-19 M WORLD



