

## Automated Design Improvement of a Crossbow Arrow Vane with HEEDS and STAR-CCM+

#### Date:

September 22, 2021



(858) 480-2000



www.ata-e.com



in ata-engineering



#### Arrow Vanes Have Significant Impact on Stability and Accuracy

- Lift and drag on arrow vanes shift center of pressure aftward
  - Produce a stabilizing moment to counter the destabilizing moment produced by lift/drag on arrow tip
- Offset vanes produce an axial moment on the arrow that creates spin stabilization



Variety of Bohning Archery arrow vanes

- > Arrow vane design has traditionally been based on experience and tribal knowledge
- Due to time and cost, R&D is limited to a sparse parametric design space using a traditional design/prototype/test workflow
- > Automated, multi-disciplinary optimization can be used to increase arrow vane performance by investigating a broad and full parameter space



# HEEDS Used to Improve Performance of Existing Bohning Crossbow Vane

- The Bohning Company, Ltd. manufactures high performance archery equipment
- Desire to accelerate the design cycle by using computational approach early in the process
- > HEEDS orchestrated automated intelligent design space exploration
  - > Four high-fidelity parallel CFD simulations per design iteration
  - Approximate 6-DOF trajectory analysis to assess crossbow arrow accuracy











#### **HEEDS Crossbow Vane Optimization Process**



#### Parametric Vane

Parameterized by 5 variables over continuous ranges

| Parameter | Baseline (in.)        | Minimum (in.)      | Maximum (in.) |
|-----------|-----------------------|--------------------|---------------|
| Н         | 0.45                  | 0.125              | 0.5           |
| L         | 2.0                   | 0.5                | 6.0           |
| R         | 1.7                   | 0.25               | 6.0           |
| te        | 0.16                  | -0.29              | 0.29          |
| t         | 2.47×10 <sup>-2</sup> | 1×10 <sup>-2</sup> | 0.1           |

- Vane geometry added to 20" shaft with vented broadhead geometry
- Vane given a 1° left offset to induce axial rotation



#### **STAR-CCM+ CFD Simulations**

- Four steady CFD simulations
- Generate aerodynamic coefficients on design iteration



#### Design Result

 Mass properties and aerodynamic coefficients sent to trajectory analysis

| to trajectory arranysis |                                       |  |  |  |
|-------------------------|---------------------------------------|--|--|--|
| CG                      | Center of gravity                     |  |  |  |
| m                       | Mass                                  |  |  |  |
| l <sub>1</sub>          | Transverse moment of inertia          |  |  |  |
| l <sub>2</sub>          | Vertical moment of inertia            |  |  |  |
| l <sub>3</sub>          | Axial moment of inertia               |  |  |  |
| $C_{L\alpha}$           | Lift curve slope                      |  |  |  |
| C <sub>D0</sub>         | Drag coefficient at 0° AoA            |  |  |  |
| $C_{D\alpha}$           | Drag curve slope                      |  |  |  |
| СР                      | Center of pressure                    |  |  |  |
| C <sub>RO</sub>         | Roll-moment coefficient at 0 RPM      |  |  |  |
| C <sub>R12000</sub>     | Roll-moment coefficient at 12,000 RPM |  |  |  |



#### Mass Property Calculation Performed Within STAR-CCM+

- ➤ Although not a full CAD tool, STAR-CCM+ is able to do all CAD operations needed in for the arrow vane design study
- > Geometry modifications performed within native 3D-CAD tool
- > Mass properties calculated via arrow mesh and field functions
  - Solid portion of arrow assembly meshed and assigned to inactive regions for each design iteration
  - Volume integral report and field functions used to numerically integrate mass, CG, and moments of inertia

$$mass = \sum_{i}^{nCell} \rho_{i} v_{i} \qquad CG = \frac{1}{mass} \sum_{i}^{nCell} \overrightarrow{r_{i}} \rho_{i} v_{i} \qquad I_{j} = \sum_{i}^{nCell} x_{j,i}^{2} \rho_{i} v_{i}$$





#### STAR-CCM+ and Python Computational Models

- > STAR-CCM+ Simulation Setup
  - ➤ Coupled solver
  - ➤ Menter SST turbulence model
  - Moving reference frame (for rotating arrow case)
  - > Steady solution
- > Mesh
  - > Polyhedral with prism layers
  - > 12 M finite volume cells
  - > Y+<5 on arrow surface

> Trajectory analysis

> RK4 used to integrate

$$\dot{x}(t) = f(x(t), v_{gust})$$

$$x(t) = \left[\alpha \beta \dot{\alpha} \dot{\beta} u_2 u_3 x_2 x_3 u_1 \omega\right]$$

- > v<sub>gust</sub> is a lateral gust profile
- > Initial conditions:  $U_1=400 \text{ ft/s}, U_2=3.75 \text{ ft/s}$
- Result reported at x=100 yards







### HEEDS Setup is Easy with the STAR-CCM+ and Python Analysis Portals



## HEEDS Intelligent Design Space Exploration Drives Towards Optimal Result

- > HEEDS SHERPA design space exploration intelligently searches parameter ranges to determine the most accurate design
- > Objectives to maximize roll rate and minimize distance from bullseye

| Parameter               | Range (in) |         | Resolution |
|-------------------------|------------|---------|------------|
| Parameter               | Minimum    | Maximum | Resolution |
| Height                  | 0.125      | 0.5     | 101        |
| Length                  | 0.5        | 6       | 101        |
| Thickness               | 0.001      | 0.1     | 101        |
| Leading Edge Radius     | 0.25       | 6       | 101        |
| Trailing Edge Concavity | -0.29      | 0.29    | 101        |

| Response                    |           |  |  |  |
|-----------------------------|-----------|--|--|--|
| Variable                    | Objective |  |  |  |
| Final Roll Rate (rpm)       | Maximize  |  |  |  |
| Distance from Bullseye (in) | Minimize  |  |  |  |

- ➤ Exhaustive search of this design space: 10.5 billion simulations
- > SHERPA finds a better design after just 32 iterations





Three design variants compared with baseline

Keeps track of simulations and skips simulations with errors

### HEEDS Keeps You Updated on Progress

Optimization problem definition







Range of parameters and responses vs. baseline

Histogram showing distribution of designs evaluated

#### HEEDS Design Optimization History Shows Quick Improvement

- HEEDS SHERPA algorithm explores design space to drive towards objective
- ➤ In first 9 evaluations, accuracy improved **30%**
- ➤ After 32 evaluations, 31% accuracy increase





## HEEDS Provides Insight into Successful Design Features





## HEEDS Can Help Identify Important Design Parameter Correlations

- Correlation table exposes relationships between parameters and responses
- Example: Spin rate is strongly correlated with vane height







### Summary

- Need: More accurate crossbow vane
- Method: Employed HEEDS Design Space Exploration software with STAR-CCM+ and an approximate trajectory analysis to find a better design automatically



Created with STAR-CCM+ screenplay

- Results: The automated method produced a design with a 31% increase in accuracy
- Conclusion: HEEDS directed STAR-CCM+ and Python to produce an improved crossbow arrow vane on an HPC cluster with minimal effort from the analyst



### HEEDS Results in Engineering Time Savings

- ➤ Prior to use of HEEDS, manual performance analysis of 4 arrow variants took about two weeks of engineering analyst time
- ➤ Model setup for use with HEEDS took 20 hours
- ➤ After initial setup, HEEDS managed analysis and design of 32 arrow variants over the weekend on cluster

$$Speedup = \frac{\left(\frac{80 \ hours}{4 \ designs}\right)}{\left(\frac{20 \ hours}{32 \ designs}\right)} = 64$$

HEEDS resulted in 64 times gain in efficiency
Engineers can spend less time submitting and monitoring simulations, more time engineering



### Contact Us





13290 Evening Creek Drive San Diego, CA 92128



(858) 480-2000



sales@ata-e.com



www.ata-e.com www.ata-plmsoftware.com



@ATAEngineering



ata-engineering

